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bstract

The extended Kalman filter (EKF) method for SOC estimation has some problems such as the lack of an accurate model, and model errors due
o the variation in the parameters of the model due to the nonlinear behavior of a battery. To solve the aforementioned issues, this paper proposes

reduced order EKF including the measurement noise model and data rejection. In order to do so, the model of a battery in the EKF is simplified

nto the type of reduced order to decrease the calculation time. Additionally, to compensate the model errors caused by the reduced order model
nd variation in parameters, a measurement noise model and data rejection are implemented because the model accuracy is critical in the EKF
lgorithm in order to obtain a good estimation. Finally, the proposed algorithm is verified by short and long term experiments.

2007 Elsevier B.V. All rights reserved.
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. Introduction

In recent years, much research has been done to improve the
stimation of the state of charge (SOC), which has increasingly
ecome an important issue in electric/hybrid vehicle applica-
ions. Ah counting, which is the most common method of
stimating a battery SOC, is easy and reliable. However, it has
roblems such as the initial value problem, an accumulated error
roblem from incorrect measurements, and no consideration of
he current losses. Open circuit voltage (OCV) for the measure
5,6,7]. However, it requires a sufficient rest period. To deal
ith these problems for Ah counting and OCV, adaptive meth-
ds, such as neural network, fuzzy logic, adaptive observer and
xtended Kalman filter (EKF) have been employed, based on
h counting, OCV and other factors [1,4,8].Adaptive methods

equire an accurate model to obtain good [3,12]. Many states and
actors are necessary to develop the accurate model of a battery.

n general, if states and input factors increase, the calculation
urden also increases. If the number of states in the EKF is n
nd the dimension of the measurement vector is /, the compu-

� The submitted work was presented at the 4th International Energy Conver-
ion Engineering Conference and Exhibit (IECEC).
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ational complex is (l∗(l2 + n2)) [9]. Therefore, the number of
tates and input factors is limited by the processor’s calculation
apability. The battery pack system in the HEV is composed
f many series-connected cells or modules. The BMS (battery
anagement system) in the HEV should measure the voltages

f each cell or module, the current of the battery, and the temper-
tures in the battery pack. Because the charge/discharge current
n the HEV can be rapidly fluctuated, the period of the algorithm
hould be less than 100 ms. Also, SOC estimation algorithm can
e applied to each cell or module of the battery pack. Therefore,
he states in the EKF should be reduced in order to decrease the
alculation time. A trade-off between performance and compu-
ational requirements is likely to be made. Also, the parameters
f the model vary due to the conditions of the battery. Variations
n the parameters of the model cause model errors, which in turn
ffect the estimation results.

To solve these problems, this paper proposes a reduced order
KF implemented by a simple battery model with a measure-
ent noise model and data rejection. Generally, the battery in

he EKF is represented by an equivalent circuit model based on
ts impedance spectrum. It consists of a series resistance, double

ayer and charge transfer, and diffusion [2,10,11]. This equiv-
lent circuit model is complex and nonlinear. In the equivalent
ircuit model, fast dynamic components can be modeled as a
esistance and, slow dynamics components can be described as

mailto:jmoonzz@shinbiro.com
dx.doi.org/10.1016/j.jpowsour.2007.03.072
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RC ladder circuit. Fast and slow dynamics are separated by
he impedance spectrum, where the RC time constant can be
etermined by the impedance spectrum data. As a result, the
attery model is simplified into an open circuit voltage, RC lad-
er, and series resistance. The infinite series RC ladders of the
iffusion are reduced into one or two RC ladder circuits. The
ouble layer and charge transfer are represented by one resis-
ance. The reduced order model can cause an accuracy problem.
he errors caused by the model simplification are mainly caused
y the fast dynamics of diffusion, charge transfer, and double
ayer. In addition, the parameters of the equivalent circuit model
ary with the SOC, battery current and so on. Variations in the
arameters due to the conditions of the battery are an additional
ause of the model errors. In order to solve the model accu-
acy and parameter variation problems, the measurement noise
odel is used. The noise measurement to compensate the model

rrors is separately conducted, depending on whether the model
s comparatively correct or incorrect, because it has an influence
n deciding the Kalman filter gain. The regions are classified
y the SOC, battery current, and battery dynamics. The model
rrors from the fast dynamics of the battery are decreased by
ata rejection.

Several tests with a 1.3Ah 18650 type Li-ion battery are con-
ucted to verify the proposed algorithm. Short term tests show
he effectiveness of each detailed algorithm. Long term tests are
erformed to guarantee the stability and reliability of the algo-
ithm. As a result of the long term tests, it is shown that the error
f SOC estimate is less than 2%.

. Li-ion battery model

The impedance-based model is used. The equivalent circuit
odel is reduced to the simple model. The EKF equations of the

imple model are also described.

.1. Impedance-based equivalent circuit model

The electrochemical characteristics of the battery are clas-
ified as follows: internal resistance, charge transfer, double
ayer and diffusion. As shown in Fig. 1, they are described as a
esistance, capacitance and constant phase element (CPE) in the
mpedance-based circuit model [2,10].
The elements of resistance and capacitance are easily realized
n the time domain, but the CPE must be realized by a distributed
ircuit model which consists of infinite RC ladder elements in
rder to obtain an accurate model. Usually, the diffusion and

o
c
a
d

Fig. 2. The infinite numbers of the RC
ig. 1. Circuit model: L (parasitic inductance), Ri (internal resistance), Cdl

double layer: CPE), Rct (charge transfer), Zw (diffusion = Warburg impedance:
PE).

ouble layer phenomena in the battery are modeled by the CPE.
ig. 2 shows the RC ladder circuit for diffusion. This series-
onnected RC ladder circuit for the CPE needs to be simplified,
ecause the increase of the states and parameters is the main
ause of the longer EKF calculation time. This simplification
s rather critical in reducing the digital processor memory and
alculation time, considering the nonlinearity of each parameter
see Fig. 2).

.2. Model simplification

The electrochemical equivalent circuits can describe the
ehaviors of the battery and can be separated into three parts,
onsisting of a series resistance, charge transfer and double layer,
nd diffusion process, in terms of the frequency components.
he slow dynamics of a battery is included in a simple battery
odel. The fast dynamics is compensated by the measurement

oise model and data rejection. The fast and slow dynamics of
he battery can be distinguished by the impedance spectrum. The
mpedance spectra of the battery used in the experiment are plot-
ed in the Nyquist domain, as shown in Fig. 3. The frequency of
he series resistance is more than 500 Hz which indicates a very
ast dynamics. The frequency of the charge transfer and double
ayer is in the range between 500 and 0.63 Hz. The calculated Rct
nd Cdl are 27.6 m� and 0.5693 F, whose time constant is less
han 0.02 [10]. The dynamics of Rct and Cdl is relatively fast.
he frequency of the diffusion is less than 0.63 Hz. The equiv-
lent circuits of the diffusion are composed of series-connected
nfinite RC ladder circuits. The time constants of the first and
econd RC ladder are calculated as about to be 44 and 11,
espectively.

The complex equivalent circuit model can be simplified based

n the dynamics of the battery. The fast dynamics of a RC ladder
ircuit can be represented as a resistance. The charge transfer
nd double layer are modeled as a resistance due to its very fast
ynamics. The diffusion is represented by one or two RC ladder

ladder model about diffusion.
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Fig. 3. Nyquist plot of battery used in experiment.

ircuits. The first RC ladder is very slow and is included in the
odel. The second RC ladder is used as a criterion distinguishing

he fast and slow dynamics for the diffusion. The dynamics of the
ther RC ladder circuits, for the diffusion, is fast and negligible.

Finally, the proposed reduced order model of the battery is
hown in Fig. 4. The proposed model consists of the OCV, one
C ladder for the diffusion, and, RD or RC one resistance for a

eries resistance and for charge transfer and double layer. It has
wo states, which are OCV and CDiff.

.3. Reduced order extended Kalman filter using simple
odel

In general, the process and measurement models used in the
KF are as follows:

Process model : xk = fk−1(xk−1) + g(uk−1) + wk−1,

wk ∼ N(0, Qk), Measurement model :

zk = hk(xk) + i(uk) + vk, vk ∼ N(0, Rk) (1)

The equations that decide the Kalman gain are as follows:
k = PkH
T
k [HkPkH

T
k + Rk]

−1
(2)

ˆk(+) = x̂k(−) + Kk[Zk − Hkx̂k(−)] (3)

ig. 4. Simplified model: VDiff (diffusion), VS (internal resistance and charge
ransfer).
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here Xk is the kth order value of X, X(−) the priori value of
, X(+) the posteriori value of X, x the state x, w the process
oise, Q the process noise covariance, v the measurement noise,
the measurement noise covariance, K the Kalman gain, P the

ovariance matrix of the state estimation uncertainty and H is
he measurement sensitivity matrix.

As described in Fig. 4, the model has only two states. With the
tates incorporated, the process model in the EKF is expressed
s follows:

dSOC

dt
= i

Cn

, SOCK = SOCK−1 + �t

Cn

· iK−1 (4)

dVDiff

dt
= i

CDiff
− VDiff

CDiff · RDiff
,

VDiff K =
(

1 − �t

CDiff · RDiff

)
· VDiff K−1 + �t

CDiff
· iK−1 (5)

SOCK

VDiff K

]
=

⎡
⎣ 1 0

0 1 − �t

CDiff · RDiff

⎤
⎦ ·

[
SOCK−1

VDiff K−1

]

+

⎡
⎢⎢⎣

Δt

Cn

Δt

CDiff

⎤
⎥⎥⎦ · iK−1 (6)

The measurement model and the terminal voltage of a battery,
re expressed by a nonlinear function as follows:

T = hK(OCV, VDiff) − VS = OCV − VDiff − VS (7)

∂hK

∂xK

=
⎡
⎣ ∂hsoc(SOC)

∂SOC
0

0 −1

⎤
⎦ ,

where OCV = hsoc(SOC), hsoc = f−1
ocv (8)

n this equation, the OCV-SOC table is expressed as an OCV
unction.

. Measurement noise model and data rejection

Model errors are the voltage errors between the measured
attery voltage and the model output voltage. The model errors
re caused by the model simplification and variations in the
arameters of the model. The reduced order model involves
he slow dynamics of the battery equivalent circuit model,
ut excludes the fast dynamics. The fast dynamics cause the
odel errors, which lead to inaccurate estimations. The fast

ynamics are mainly composed of the charge transfer and
ouble layer and diffusion. When there is a step change in
he battery current, the fast dynamics of the charge transfer

nd double layer and diffusion are present. The measurement
oise model and data rejection are necessary to compensate
he model errors caused by the fast dynamics. The parame-
ers of the equivalent circuit model vary with the SOCs, the
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harge/discharge current rate and so on. Variations in the param-
ters of the model cause the model errors. The model errors
ncrease when the SOC is in the extreme region or when
he charge/discharge current rate is high. In these cases, the

odel errors should be compensated by the measurement noise
odel.
The measurement noise model and data rejection are imple-

ented by modifying the measurement noise covariance, Rk.
s shown in Eq. (2), the measurement noise covariance, Rk, is

n important factor in deciding the Kalman filter gain in the
KF. Since Hk is fixed in the simple model, the measurement
oise covariance has a strong influence on the Kalman gain.
hen Rk is large, an estimate mainly depends on the process
odel. When Rk is small, the estimate mainly depends on the
easurement model. When Rk is infinite, Kk is 0 and the esti-
ate is equal to x̂k(+) = fk−1(x̂k−1(+)) + gk−1(uk−1). When
k is 0, Kk is H−1

k and the estimate is equal to x̂k(+) = KkZk.
ata rejection is achieved when Rk is infinite. By adopting the
easurement noise model and data rejection, the Kalman filter

ecomes robust to the model errors from the model simplifi-
ation as well as from the variations in the parameters of the
odel.

.1. Measurement noise model by dynamics of diffusion

The diffusion in the equivalent circuit model is composed of
nfinite elements of the RC ladder circuit. However, it can be
educed to one RC ladder circuit through the model simplifi-
ation. When the battery current changes abruptly, the voltage
f the capacitor in the RC ladder is expressed as Eq. (10), and
he voltage can be approximated as Eq. (11) after the RC time
onstant if the current level remains unchanged significantly.

hen Eq. (11) is applied to the fast dynamic RC ladder circuits
n the equivalent circuit model, the measurement voltage at the
nitial response of the step current does not match the output
oltage in the reduced order model and the errors occur. In order
o compensate the errors, the measurement noise covariance,
k, should be determined separately according to whether or
ot the voltage of the RC ladders can be approximated by Eq.
11).

(t) = RI(1 − e−t/RC) + Vinite
−t/RC (10)

≈ RI (11)

Because the second, and other RC ladders in the diffusion
odel described in Fig. 2 have a fast time response, they can be

pproximated as Eq. (11), and the second RC ladder is selected
s a decision ladder. If the voltage in the decision ladder does
ot satisfy Eq. (12), the errors caused by the dynamics of the
iffusion should be compensated.
1 − α) · Rn · I < Vn(t) < (1 + α) · Rn · I, n = 2, 3, . . .

(12)

here Rn = 2RDiff/(n2π2).

2
c
d
c

Fig. 5. Impedance curve by SOC regions.

When the condition described in Eq. (12) is not satisfied, the
easurement noise model is implemented as follows:

Rk = infinite if
�I

Ts

is greater than a set value

Rk = Rk otherwise

nitsteptime can be decided by the second RC ladder’s time
onstant and Gstep is obtained from trial and error.

.2. Data rejection caused by the fast dynamics of the
harge transfer and double layer

The dynamics of the charge transfer and double layer has a
ime constant of less than a 100 ms and is modeled as a resistance
n this paper. However, when there is a step current, the dynam-
cs of the charge transfer and double layer causes the model
rrors. Because the errors exist for a short period, data rejection
s adapted by the measurement noise covariance, Rk, is set as
nfinite and the Kalman gain becomes zero. Whether or not to
eject data is determined by the step current. If �I per sample
ime is larger than a set value, it is regarded as the step current
nd the data rejection is carried out.

Rk = infinite if
�I

Ts

is greater than a set value

Rk = Rk otherwise

.3. Measurement noise model by SOCs

The parameters in the circuit model vary with the SOCs. The
arameters determined in the middle SOC region are used in
he circuit model, because there is little change in this region.
owever, they vary largely in the extreme SOC region, below

0% and above 90%, as shown in Fig. 5. The impedance
urve in the low SOC region is different from that in the mid-
le region. Variations of the parameters in these SOC regions
auses the model errors. The measurement noise covariance in
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4.1. Short term dynamic test

Two and three state models with or without the measurement
noise model and data rejection are used in a short term dynamic
J. Lee et al. / Journal of P

he extreme SOC region should be adjusted to compensate the
rrors.

The measurement noise model is implemented by modifying
he Rk according to the SOC regions as follows.

Rk+1 = Rk for (0.2 < SOC < 0.9)

Rk+1 = Rk{1 + Gsoc1(0.2 − SOC)} for extreme SOC (SOC

Rk+1 = Rk{1 + Gsoc2(SOC − 0.9)} for extreme SOC (SOC

Gsoc1 = Gsoc2 = 10

soc1 and Gsoc2 are the optimal values acquired from trial and
rror.

.4. Measurement noise model by battery current

The impedance of a battery is generally measured in the sta-
ionary condition. However, when the DC current is charged or
ischarged in a battery, the impedance of the charge transfer
nd double layer and diffusion varies with the battery current
ate [10,11]. The greater the charge/discharge rate increases, the
arger the impedance and the parameters of the circuit model
ecome. Also, variations in the parameters caused by the bat-
ery current rate contribute to the model errors. The errors are
ompensated by modifying the measurement noise model. When
he battery current is more than a set current, the measurement
oise covariance, Rk, is adjusted as follows:

Rk = Rk for reliable Current (|i| < 5)

Rk = Rk{1 + Gi(|i| − 5)} for unreliable Current (|i| > 5)

Gi = 2

i and Gsoc have the similar roles in adjusting the Kalman filter
ain.

.5. Algorithm of measurement noise model and data
ejection

The process model in the EKF algorithm is composed of a
educed order system by omitting the fast dynamics of the equiv-
lent circuit model. Variations in the parameters of the model
re caused by the nonlinear characteristics of the battery. There-
ore, the model errors in this paper are caused by four factors:
ynamics of diffusion, dynamics of charge transfer and double
ayer, SOC, and battery current rate. The former two factors are
aused by the model simplification, while the latter two factors
re caused by the nonlinear behavior of the battery. In order to
ake an accurate estimate, the errors caused by the aforemen-

ioned four factors should be compensated. The measurement
oise model is implemented by modifying Rk. In the four cases,
k is adjusted by the above methods. The flow chart of the algo-

ithm is shown in Fig. 6. At an initial stage, initial values are
et. In the main loop algorithm, the current and voltage of the
attery are measured per sample period. The measurement noise

ovariance, Rk, for the four error cases is calculated before the
KF algorithm is performed. First, it is determined whether or
ot to reject data by the fast dynamics of the charge transfer
nd double layer. After that, the measurement noise model Rk is
Sources 174 (2007) 9–15 13

0.2)

0.9)

elected by the three factors. The Kalman filter gain is calculated
y using the determined Rk and the states are estimated. In this
lgorithm, the calculation time is reduced by the simple model,
nd the model accuracy is obtained from the data rejection and

easurement noise model. The error compensation by the four
actors is verified through experiments.

.6. Verification method

The most difficult aspect in the SOC algorithm test is to set a
eference SOC to which the estimated values are compared. In
his paper, the reference SOC is set by three methods: ampere
ounting, discharge and OCV method. The reference SOC deter-
ined by the ampere counting method is applied to short term

ynamics tests. Although the ampere counting method has criti-
al disadvantages such as the initial value and accumulated error
roblems, it is very correct in a short time test. The reference
OC set by the discharge and OCV methods is generally very
ccurate. However, the discharge test value by the definition of
he SOC cannot be measured in the middle of the dynamic pro-
le test, because the value is acquired after the dynamics tests
re finished and the battery is fully discharged. Another method
s OCV, but it also has similar problems such as the discharge
est value, because it should be measured after some rest time
2 h in these experiments). Therefore, after one profile test, the
eference SOC by them is applied for comparison.

. Experiment result
Fig. 6. Flow chart of the algorithm.
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Fig. 7. Short term dynamic test profile.

est to find the proper number of the states. The two state model
hich consists of the SOC and one RC ladder, is shown in Fig. 4.
he three state model consists of a two state model and an addi-

ional RC ladder for the diffusion. The reference SOC is set by
he ampere count method.

The short term dynamic test, as shown in Fig. 7, was con-
ucted for about 300 s. The results of the SOC error for the two
tate model with Rk model, the three state model with and with-
ut Rk model for the dynamics of the battery current are shown
n Fig. 8. The models with the measurement noise model are
nsensitive to the dynamics of the battery current. In this test,
t is shown that the models with the measurement noise model
nd fast dynamic data rejection for the battery current rate are
ore effective. Although the three state model has a lower SOC
rror than the two state model, the latter is proposed in order
o reduce the calculation time. The proposed model with two
tates and measurement noise model are accurate in the SOC
stimate.

Fig. 8. Simplified short term dynamic test results.

d
l
m

Fig. 9. Automotive profile.

.2. Automotive profile test

The automotive profile test is necessary to verify whether or
ot the proposed algorithm is valid in the HEV. The experimen-
al battery is a 1.3Ah 18650 type Li-ion battery, which is not a
ypical battery for HEV. Therefore, the reference current pro-
le for a driving cycle is scaled down. In this test, it is shown

hat the diffusion dynamics, the fast dynamics of the charge
ransfer and double layer, and the battery current rate influences
he algorithm. The reference SOC is set by the ampere count

ethod.
Fig. 9 describes the automotive current profile. There are

ide variations in the battery charge and discharge current. The
eference SOC in this test is shown in Fig. 10. Fig. 11 shows
he SOC errors for the EKF without the Rk model, the Rk model
ynamics and fast dynamics of the charge transfer and double
ayer, and the model with all measurement noise models. The

odel error by the battery current is small, because the overvolt-

Fig. 10. SOC for automotive profile test.
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Table 1
The result of the long time test

EKF OCV Discharge Error = EKF−discharge

1 0.7639 0.7617 0.7478 0.0161
2 0.6890 0.6829 0.6707 0.0183
3 0.6125 0.6076 0.5934 0.0191
4 0.5177 0.5137 0.5101 0.0076
5 0.3935 0.3905 0.3763 0.0172
6 0.4595 0.4619 0.4472 0.0123
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Fig. 11. The result of automotive profile test.

ge due to the large battery current is not large. The dynamics
f the diffusion and charge transfer and double layer make the
odel errors large and frequent. Therefore, a Gstep larger than

he Gi is chosen so that the measurement noise model from the
ynamic characteristic is more effective than by the input current
agnitude.

.3. Long term test

To guarantee the algorithm’s stability in running time and
he influence by the SOC, a long term profile experiment is
arried out. The long term profile is based on the scale-down
utomotive profile, described by Fig. 9. The scale-down auto-
otive profile reduces the battery SOC by about 7% in one cycle.
everal tests were conducted in order to make comparison for
ifferent SOCs. Eight long term profiles lasting 5 days each are
pplied.

Test SOC range: 0.35–0.85
Discharge profile: Fig. 9
Charge profile: reversed current profile of discharge profile
1 Test profile: 9 times discharge profile applied, 8 times charge
profile applied.
2 Test profile: 9 times discharge profile applied, 7 times charge
profile applied.
. . .

5 Test profile: 9 times discharge profile applied, 3 times charge
profile applied.
6 Test profile: 7 times discharge profile applied, 8 times charge
profile applied.
7 Test profile: 6 times discharge profile applied, 8 times charge
profile applied.
8 Test profile: 5 times discharge profile applied, 8 times charge
profile applied.
The following table is the result of the long term tests. As
hown in Table 1, the SOC error is less than 2%. This result
as a comparatively smaller error. It is shown that the proposed

[

[

0.5210 0.5287 0.5178 0.0032
0.6210 0.6226 0.6152 0.0058

lgorithm (EKF) follows the OCV value well by filtering model
rrors by using the measurement noise model and data rejection.

. Conclusion

An SOC estimation method, based on the reduced order
xtended Kalman filter with the measurement noise model and
he data rejection, is proposed. The method of modeling and sim-
lifying the Li-ion battery is based on the impedance spectrum
f the battery and the equivalent circuit model. The calculation
ime of the EKF method is reduced by the model simplification
nd the model errors caused by the reduced order model, and
ariations in the parameters of the model are compensated by
he measurement noise model and data rejection. The feasibility
nd verification of the proposed algorithm and model approach
re made through several experiments.
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